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Abstract

The time-dependent rotational transformation, which is a special case of the time-
dependent linear transformation of coordinates in Newtonian mechanics, is considered
rigorously from the point of view of infinitesimal transformation. By this approach
the standard techniques in differential geometry can be naturally introduced to
classical dynamics. The relation between rotational reference frames and E. Cartan’s
Euclidean connection is obtained. It is suggested that the extension of the present
theory to the (time-dependent) general linear transformation is possible by using

the bundle L(M) of linear frames over a manifold M.

1. Introduction

Let x = (x4, x5, x3) and x" = (x], x5, x3) be the coordinates of the position
of an identical particle observed by the two observers S and S', respectively,
who are in an arbitrary relative motion in a three-dimensional Euclidean
space. We regard time £ as an absolute (invariant) parameter. Then the
transformation x - x can be represented as follows:

x—=>x =x-A(t) +a(®) (1.1
where

A = [a;(0], a(t) = (a(1), ax(t), as(t))
detla;(e)l = 1, "A(H)y=A"Yr) forall ¢ (1.2)

If we fix time ¢ in these equations, the set of these transformations forms the
so-called group of motions, which is the fundamental group of Euclidean
geometry in F. Klein’s viewpoint (Yano, 1968). In this connection we have
formally discussed from the viewpoint of a finite transformation the time-
dependent transformation (1.1) in the framework of Newtonian mechanics

and
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excluding the restriction of the inertial frame (Ohkuro, 1976); in this dis-
cussion two formal assumptions have been made, viz. the “vectorial property
of transformation,”

d2 d2
dr mo A(), F-F-A(t) (1.3)
and the “covariance,”
a*x’'
"oz s F 1.4
of Newton’s equation of motion,
m % = F (1.5)

under the transformation (1.1). Here m and £ represent mass and force,
respectively. In this way we have pointed out the importance of the time-
dependent transformation (1.1) in connection with the problem of the
accelerated frames. However, the assumption (1.3) is irrelevant, which can
be easily seen by differentiation of equation (1.1). Therefore we need the
more rigorous mathematical treatment of the transformation (1.1).

In this paper we consider the transformation (1.1) only for the case
a(t) = 0 from the viewpoint of an infinitesimal transformation:

x> x =xA)
where

detlA(t)l = 1 and “A(H) = 47Y(r) for all ¢ (1.6)

This transformation corresponds to that to the rotational frame.

2. Acceleration as a Tensor

For the linear transformation (1.6), we can give its rigorous treatment as
shown in this and the subsequent sections.

Let dP be the infinitesimal displacement of the position P of a particle in
a three-dimensional Buclidean space E® between the time ¢ and 7 + dz. (We
use the symbol d, instead of d, for the expression of an infinitesimal vector.
We use the symb01 d for the exterior differentiation.) The identical quantity
dP may be represented by two observers S and §', who are in a relative rota-
tional motion, at time ¢ as follows:

dP=dx-e=dx ‘e 2.1
where
dx = (dxl, dJC2, dJC3), e = t(el, es, 83)

and the equations of the same forms for dx' and e’, respectively. Here e and e’
are the bases of the two orthonormal Cartesian coordinate systems. Equation
(2.1) is the approximate expression (within the first order with respect to
infinitesimal quantity) of the infinitesimal displacement dP(¢) of a moving
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point P(¢) between time £ and ¢ +dt, i.e., P(t +dt) — P(t) = {P(t) + dP(t)} -
P(t) = dP(f) = dP, in terms of the bases at time 7: e = e(¢) and e’ = €'(¢). Next
we specify the infinitesimal change of the bases, de = de(f) = e(f + dt) — e(f)
and de’ = de'(r) = e(t + dt) — ¢'(¢) by the equations

de=-eandde’ =Q ¢’ (2.2)

where the antisymmetric matrices $ and €' of differential forms of degree 1
are given as follows:

Q=dT(s) = di;(;)
and (2.3)
Q' =dT'(r) = dZ( )

where T(¢) and T'(f) are given by
e(t)=T(t) -e(t = 0)
and {2.4)
e(H)=T'(t) ' (=0
Here the time-dependent matrices 7(7) and 7'(¢) satisfy the condition for A(f)
of the same form as equation (1.2). The equations (2.1)~(2.4) are the funda-
mental tools of our infinitesimal approach.

From these equations we can calculate the “infinitesimal displacement” of
the velocity vector dP/dt as follows:

{215

dx dx Q
4o — dt 2.5
(dﬂ dr dt) @3)

and on the other hand we have

dP\_ (ax' d*x' dx' Q
dl= |=d|=¢') = —-—-e'-dr 2.6
(d ) (dz ° ) (dr2 dt dz) (2.6)
According to the condition for the observers S and S’ given at the end of
Section 1, we have the relation for e and e’ as follows:

e'=A(f) e 2.7

where A(r) is the one given by equation (1.6). Using this equation we have
following equations:

dP=dx -e=dx -e' =dx -A(t) e

dP dx dx' , dx’

N AT
@ e T
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dP 2
B T - A T
dt dt dl dt

a2 de ,
= |5+ = |edt
a? ar ar)
(dzx dx'

— “A(f) -edt
drr  dt dl‘) ®):-e

and

from which we have the following equations, which show the tensorial
character, for the transformation (2.7), of the corresponding quantities:

Hdx") = A - Y(dx)
[ax\_ o[
() ()

1 2
(d LB Q) » (dx+dx Q) 2.8)
dl‘ dtr dt de* dr dr
From the last one of equations (2.8) we obtain the definition of acceleration
as a tensor under the transformation (1.6): We define an acceleration tensor
by the coefficient of covarient differentiation of the velocity tensor dx/dt.
If 2 is independent of ¢, then our acceleration reduces to the usual one,

2x/dt?. This is the case for the fixed frame in Newtonian mechanics,
because 7(¢) is independent of ¢ in equation (2.4) in this case.

and

3. Generalization to Non-Euclidean Space

In the previous section, (1) we have defined the “connection” of a Euclidean
space (or an orthonormal Cartesian frame) with respect to the time-variable f,
ie., equations (2.1)~(2.4). Furthermore, (2) we have defined an acceleration-
tensor for the rotational frame in a Fuclidean space. In this section we consider
the possibilities of modification and generalization of these two conditions,
respectively, which will enable us to introduce the standard technique in
differential geometry, i.e., the concept of fiber bundle of a differentiable
manifold, to our present problem.

In the previous section we have represented the difference de(r) = e(r + dt)
— e(r) of the basis vector between time ¢ and ¢ + dt by the basis vector e(?)
at time ¢, i.e., equation (2.2). We can apply the same technique for the
coordinates x instead of time ¢, because we are not considering such a
problem as a stocastic motion in the present paper, and because we are
considering such a motion that the position x(¢ + d¢) of a particle at time
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t +dt is uniquely and smoothly determined by that x(¢) at time ¢. Therefore
we can regard e(z + dr) as e(x +dx),

e(t +dn) = elx +dx) elx +dx) = e[x(t) + dx(?)]
=~ elx(r +dr)] = e(t +d1)
where
x(#):t-=>x (unique and smooth) 3.1

and
x +dx =x(t) +dx(t) =~ x(¢ + dt)

The same modification applies also to the infinitesimal vector dP given by
equation (2.1). Thus we obtain the “connection” of an orthonormal Cartesian
frame along the path x(¢) of a particle regarding the time f as an implicit
parameter. Hereafter we mean this modified sense when we refer to equations
(2.1)-(2.4) as “connection” of a Euclidean space.

In the previous section we obtained acceleration as a tensor under the
transformation of equation (1.6). The discussion given there can also be
applied to the Euclidean tangent space. In fact if we require the tensorial
character only of the acceleration, then the base space given by coordinates
x need not be a Euclidean space. It is sufficient if its tangent space is a
Euclidean space. Therefore we regard the discussion given in Section 2 as
the one in the Euclidean tangent space, which has a rotational group as
its fundamental group, of a general (differentiable) base manifold. Then
the orthonormal Cartesian frames e and e’ are interpreted as the local
frames in the fiber on a point x in the base manifold.

From these considerations we arrive at the following conceptions: Let

x be the coordinates of the three-dimensional differentiable base manifold
M?3. Along the path x(7) of a particle, where x(¢) is a unique and smooth
function of time #, Euclidean tangent spaces {E>(x(£))la < t < b} are
assigned, and the relation between E3(x) and E3(x + dx) along the path is
given by the “connection” (2.1)~(2.4).

Thus the rotational motion of a particle in ¢ Fuclidean space can rigorously
be treated using the fiber, whose fundamental group is rotation, along the
path x(?) in the base differentiable manifold M°: The position of a particle
can be regarded as a point in the manifold M°, and the observers and the
group of the transformation between them can be regarded as the frames in
the fiber and its structure group, respectively. It is to be noted that even if
we start with a Fuclidean space, it is necessary to introduce the manifold,
which is generally not a Euclidean space, when we discuss the motion in it
(the Euclidean space) eliminating the transformations between observers, i.e.,
in a covariant fashion.

4. Euclidean Connection

In the preceding section the fiber along the path x(f) in M> was introduced.
We embed this fiber into the usual fiber bundle over M* with the rotational
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group as its structure group. Thus we are led to investigate the fiber bundle
itself, where the bundle space is obtained by moving the point P over M 3
from the set Fp of the system of all positive orthonormal vectors in the
tangent space at a point P. In this section we investigate the same problem
from the classical viewpoint of E. Cartan, i.e., the Euclidean connection in a
differentiable manifold. [Nowadays E. Cartan’s Euclidean connection is
called a metric connection of Riemannian manifold (Kobayashi and Nomizu,
1963).] We proceed according to Yano (1968). First let (x1,x2%,x3) be the
coordinates of a point of a general three-dimensional space M 3, Next we
suppose that the tangent space at each point P of M3 is the space with the
group of motions as its structure group, that is, a Euclidean space in Klein’s
sense. We assign linearly independent three tangent vectors 4;(x),7 = 1,2, 3 to
each point P(x), x €M, of M3. [4;(x),j = 1,2, 3 need not be an orthogonal
system.] Then the point P(x + dx)~ P + dP in the neighborhood of the
point P(x) is expected to be described in the form

3 .
P+dP=P+ T wi; (.1)
j=1

because the point P(x + dx) can be regarded as the point in the tangent space
at the point P(x). Here ' are Pfaffian forms depending on the coordinates x".
w* satisfy the equation of the following form:

, 3 . .
W= '21 P dxt 4.2)
=

where p/; are differentiable functions of x. Thus we have the expression for
the infinitesimal vector dP

3 ,
dP= Z w4; 4.3)
j=t
We have the equations

dP=2 |z P],-dx')Aj= z (E p’,-A,-)a’x’ =3 Adx’ 4.4
i i i\j i
where we write Ejpj,-Aj as A; again.

When we put this tangent Euclidean space at the point P +dP upon the
other tangent Euclidean space at the point P, we must assign the positions
which the vectors 4; + d4; in the tangent space at the point P + dP take in
the other tangent space at the point P; we must assign the vectors 4; + d4;
using the tangent vectors 4. (Here it should be noted that we are not
assuming the orthogonality, but assuming the linear independence of
vectors 4;in the tangent Euclidean space.) This can be done by the
equation

3 .
A]'+dA]‘=A]'+ > (.O]‘lAi (45)
=
i.e., 3 !
d4; = = wiA; (4.6)

i=1
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where the quantity w;’ 'is a Pfaffian form depending on the coordinates x,
and we define the connection coefficients I by the equation
z Ijpdx® (4.7)
Finally the Euclidean connection of our space is represented by the following
formulas:
dP = Adx' (4.8)
and
dd;= Ty kdx k4, (4.9)

where both here and hereafter repeated indices are summed over. The
Euclidean connectlon of our space M is determined by assignment of 33=27

functions [} Generally I'f, is not symmetric: F]k % .
Let us con31der the transformation of coordinates
x—>X (4.10)
The above formulas can be written in the coordinates X as follows:
dP = Adx’ (4.11)
and
d4; = Thdx*4; (4.12)

In the former the infinitesimal vector dP is equal to the other infinitesimal
vector dP,

dP=dP (4.13)
because the point P is invariant for the transformation of coordinates
P=P (4.14)
Therefore from equations (4.8) and (4.11) we have
- axt
A;= 37 (4.15)

which shows that 4; are the components of a covariant vector. We have the
equations, using equation (4.15),

- ax® ax® ax?
dA]'— (EE.AG) —d(ﬁ).Aa+a;7'Ma

92x® ax*
—— dxk4,+ —-d4
ox/ox* * ax] ¢
aZ a a ) b
= ]’; T, 5 Th Ay ai dxk (4.16)
X x
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where in the last equality we have used equation (4.9). On the other hand
from equations (4.12) and (4.15) we have the equations

o o w; OX°
dAj = F;kdka, = F]lk %Aad)_ck (417)

From equations (4.16) and (4.17) we have

3% axPoax¢ _. ax®

e e g e TR TV

dxTox*  axl axk L be ™ Lk 3 (4.18)
which gives the transformation rule of the connection coefficient for the
transformation of coordinates. (See also Yano, 1968).

The torsion form 7 and curvature form @ are introduced according to

Flanders (1963) as follows:

d2P =d(dP) = d(4;dx") = dd; - dx’ + A;d%'
=d4; dx'= (.o/;él,- - dx' = Tedx* dx'A;
571;4]:7“/1 (4.19)
where
r=(r!, 7, ) and A =44;, 45, 43) (4.20)
The torsion coefficient Tijk is defined by the equation
=Tl dxldx, Thwe = ~T' (4.21)
Therefore we have the equation
T%=Th Tk (4.22)
On the other hand we have the equation
d%4; = d(d4)) = d(w/4)) = dwy - 4; — wfd4,

= dw,»" ‘Aj— wi’wjk ‘Akz (dw,—f - w;kwk"’) 'A]'

=0/ -4;=0-4 (4.23)
where
©=(0/)
Thus we have the equation
0 =dw — w? (4.24)
where
w = (w)

The curvature tensor R,—f,d is defined by the equation

0./ = 3R Tdx*dx!, R/p= —R/y (4.25)
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In equations (4.19)-(4.25) products of differential forms represent the
exterior products. From equation (4.23) we have the equation
ary  ari . .
R; kl=a_;fl¢"5‘j'+ i Tl — Tt Tha (4.26)

It is well known that the space with Euclidean connection is a generaliza-
tion of Riemannian space in the sense that in the former torsion form is
generally not zero whereas in the latter it is usually set identically equal to
zero; Riemannian geometry is based on the torsionless connection. In the
space with Euclidean connection the base manifold M> can be locally approxi-
mated by the tangent Euclidean space whose basis is given by the set of
linearly independent covariant vectors (4, A5, 43).! Therefore we can
consider the length ds of the infinitesimal vector dP = 4;dx":

ds?=dP - dP = (4;. dx' YAy - dx*)

= A; - Adxldx® (4.27)
where the product dx/dx* is not the exterior product. Thus we have
ds? = ik dxldx* (4.28)
where
&= A, Gk =8k (4.29)

Equation (4.28) shows that our space is a Riemannian space. (Only our choice
of connection is different from the case in conventional Riemannian geometry.)
Differentiating equation (4.29) we have the equations

(d4y) - A + 4; - (dAg) = dgg,
and
(DhAx"A,) - Ay + 4; - (T,dx"A,) = dgp,

Therefore because of the arbitrariness of dx” we have

g
T'f g + Tikngja = é}lﬁ (4.30)

which is the condition to be satisfied by the functions I‘;:k in order that the

given connection I'%, be nothing but a Euclidean connection (Yano, 1968).
Nowadays a connection satisfying equation (4.30) is called a metric connection
of a Reimannian space. In particular, Christoffel’s symbol {;k} = {fq-}, i.e., torsion-

! Aj; need not be “orthonormal” here. On this point Euclidean connection can be
regarded as a preliminary step to a linear connection in the principal fiber bundle
L (M) of linear frames over M, which corresponds to the generalization of equation
(1.6} such that 4(s) is an element of the general linear transformation group GL(3; R)
of dimension 3 for any fixed 7. In particular Euclidean connection is a connection in
O(M), i.e., the principal fiber bundle of orthonormal frames over M (Kobayashi and
Nomizu, 1963). See also Section 5.
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less connection, satisfies equation (4.30), as is well known, and therefore
{ ,k} is one of the solutions of equation (4.30). However, the values of F]k

satisfying equation (4.30) exist innumerably besides {,k} (Yano, 1968),
where we have

ag ag kK Ok
1 za =4 4 281 4.31
=1yt = (6x ol 3x? 4.31)
and
, . 10, forikj
iag =iz 432
8 8= {1, fori=j (4.32)

5. Discussion and Conclusion

Even if we restrict ourselves to the rotational motion of a particlein a
Euclidean space, from the viewpoint of the transformation of coordinates
the mathematically rigorous treatment is not so simple as the conventional
discussion i m classical dynamics. It is necessary to introduce the differentiable
manifold M> with a tangent Euclidean space, i.e., the fiber bundle on M°
with the rotational group as its structure group, in order to discuss even the
rotational motion in a Euclidean space. The position of a particle can be
regarded as a point in the base manifold M°, and the observers and the group
of transformation between them can be regarded as the frames in the fiber
and its structure group, respectively. This corresponds to the principal fiber
bundle O(M) of orthonormal frames over M.

In Section 4 we have given a brief explanation of the conception of
Euclidean connection according to Yano. Euclidean (or metric) connection
is the one that has the character between Riemannian connection (or Levi-
Civita connection) and affine connection (or linear connection). It is to be
noted that in the space with Euclidean connection we have the metric tensor
g;7as well as the torsion form; in Riemannian connection the torsion form
is zero, and in affine connection we cannot define the concept of the length
of a vector (therefore we cannot define the metric g;; either) (Yano, 1968).

In Riemannian geometry the Ricci tensor Ry, where

Ry = aZ Rfa (5.1

plays an important role. However, in the space with Euclidean connection
the quantity corresponding to this contraction does not have any geometrical
(or invariant) meaning for transformations of frames, as seen from equation
(4.25). On the other hand the trace of the curvature from @, which is invari-
ant under the transformation of frames, has the following form:

Tro= 29'—«2- (ER,k;)dxkdx (5.2)
i

Thus in our approach the quantity Z;Ri % Tnust have an important meaning
instead of the “Ricci tensor” Z,R;% . In fact we can give the new definition
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of the gravitational field (different from Einstein’s theory) in terms of the
quantity Z;R /g, instead of Z,R;%;. Then we can obtain the right-
hand side, the force term, of our new equation of motion using the
quantity Z;R/;;, in which the acceleration tensor is given by equation {2.8).
The detailed discussion of these points will be given in a separate paper,
in which the results given in the present paper will be extensively used.

It is to be noted that in Riemannian geometry we have the trivial result

2R{u=0 (5.3)
1

which is another reason that we must extend Riemannian geometry, or
rather Riemannian connection, itself. Riemannian connection is a con-
nection in the principal fiber bundle O(M) of orthonormal frames over

M with a corresponding metric given by equations (4.28) and (4.29). In
equation (4.29) the inner product A; - Ax of two tangent vectors A;and

Ay means that of two vectors in a Euclidean space. Equation (5.3) holds
even in a Euclidean connection of M, if we use the metric given by equations
(4.28) and (4.29). The reason is as follows: The metric admits the choice

of orthonormal frames of tangent space 7,.(M} at x €M, and therefore

the curvature matrix © = (6;/) becomes antisymmetric so that

Tre=0

To use equation (5.2) we must generalize the metric given by equations
(4.28) and (4.29); this leads us to the concept of the principal fiber bundle
L(M) of linear frames over M. This corresponds to an extension of A(r)

in equation (1.6) to GL(3; R). This subject will be discussed in a separate
paper.
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